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Introduction 
Dynamic system simulation (DSS) models of a variety of fissile solution systems have been developed. 
References 1 through 3 describe the preparation and application of these models to historic aqueous 
homogeneous reactors (AHR). Close agreement is obtained between theoretical treatment using DSS 
techniques and experimental data. Reference 4 extended this treatment to sub-critical, accelerator-
driven systems. The kinetic behavior of these systems is governed by reactivity feedback mechanisms 
driven by fluid density changes arising from fuel heating and radiolytic gas generation. This behavior is 
the subject of DSS modeling. Here we consider linear stability analysis, by developing transfer functions 
for these systems and, using the output of DSS models, suggest expected behavior to small deviations 
from equilibrium.  

Space-Independent Kinetic Equations 
As discussed in Reference 1, the space-independent behavior of a fissile solution system may be 
described by the following set of coupled equations: 
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Equation 1 governs the normalized prompt neutron population in the fissile solution, while the set of 
equations represented by Equation 2 track the normalized delayed neutron population. R is the 
reactivity of the system and Qs represents an external neutron source. 

Temperature and radiolytic gas void in the fissile solution are governed by expressions given in 
equations 4 and 5. 
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Reference 5 presented the analysis of a transfer function for an AHR showing that for deviations from 
steady-state power, P0, such that δP(t)/P0 << 1, (δP(t)=P(t)-P0) the system of equations 1 through 5 may 
be linearized and a general transfer function developed. This allows examinations of power fluctuations 
arising from variations in R0 or Qs.   

Transfer Function and Stability Analysis 
Applying the prescription given above the set of equations 1 through 5 may be linearized. Retention of 
the source term, Qs, results in the steady-state reactivity, R0, appearing explicitly in the transfer function: 
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Where 𝑙𝑙∗ =  𝛬𝛬
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In the absence of Qs the reactivity term is absent and the transfer function is identical to that presented 
in Reference 5 where results of applying Equation 6 in such cases are presented in the form of Bode and 
Nyquist plots. Data utilized in that analysis was that obtained from operation of the LOPO (LOw POwer) 
AHR that operated at Los Alamos National Laboratory (LANL) in the 1940’s. The results of this analysis 
may be summarized as follows: 

• For large enough P0 a resonance occurs in the transfer function indicating that for such P0 the 
reactor is less than critically damped in the linear approximation. Hence, in such cases the 
transient solution contains a damped oscillatory term with an angular frequency at which a 
resonance occurs; 

• If α and 𝜑𝜑 are both negative, as is the case with uranium fissile solution systems, the non-linear 
transient solution also contains a critically damped term. Therefore, no infinite resonance can 
occur. 

SUPO (SUper POwer), a descendent of LOPO, operated at LANL for 23 years from 1951 until 1974. 
During that period it accumulated approximately 600,000 kwh of operation. SUPO is considered the 
benchmark system for AHR performance. In Reference 6 the stability of SUPO is analyzed by utilizing 
experimental data from SUPO operations to develop a simulation model. This model exhibited no 
sustained reactivity oscillations and predicted mild core thermo physical response during transients due 
to large thermal inertia of the solution fuel and the rapid reactivity feedback of the radiolytic gas. 

Figures 1 and 2 provide Bode amplitude and phase shift diagrams for SUPO using the transfer function in 
Equation 6 with values obtained from the DSS model for SUPO as identified in references 1 through 3. 
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Figure 1 Bode Amplitude Plot for SUPO 

 

 
Figure 2 Bode Phase Shift Plot for SUPO 

 
The relative behavior of SUPO given here and LOPO given in Reference 5 is the same: 

• Resonances occur in amplitude plots with both reactors showing resonances at approximately 
the same frequencies (~0.01 – 0.1 radians/sec) at high power. SUPO exhibits resonances for low 
power. All are damped; 

• Amplitude damping is greater the higher the fission power; (in this sense higher power systems 
are increasingly stable); 

• Phase shifts increase with power. 
Figures 3 and 4 provide Nyquist plots for SUPO. Here only the terminal region approaching ω = 0.1 is 
shown. Figure 3 is a large scale view. The contours are closed by the arc at−∞. Figure 4 is a detail view 
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of the contours near +1. Since there are no unstable closed loops stability may be claimed as in 
Reference 5 and the conclusions of that reference apply. 

 

 
Figure 3 Nyquist Trajectories for SUPO 

 
Figure 4 Details of Nyquist Trajectories Near +1 

 
Reference 4 presented a DSS for a sub-critical accelerator-driven system. Power dependency on the 
external source is described as are examples of perturbations from steady-state reactivity (such as may 
occur from off-normal behavior in the gas loop) and an oscillating source.  

Figure 5 illustrates the response of a sub-critical accelerator-driven system operating at steady-state to 
step reactivity (R0) insertion. Figure 6 illustrates the response to oscillation in the source Qs. 
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Figure 5 System Responses to a Step Reactivity Insertion 

 

 

Figure 6 System Responses to Accelerator Output Oscillation 
 

In Figure 5 the rapid damping of the step increase can be seen with the result that a new steady-state is 
reached. This would be the case regardless of the source of the reactivity step (control rods, clogged 
plenum, increased flow or decreased temperature of coolant). Figure 6 illustrates that an oscillating 
source results in a similar oscillation in the fission power. In either case reaction to bounded excursions 
are similarly bounded. 

If we apply the general transfer function in Equation 6 to an accelerator-driven sub-critical system the 
following Bode and Nyquist plots are obtained. The DSS for such a system described in Reference 4 was 
utilized to obtain steady-state power and other parameters needed in Equation 6; Figures 7 through 10 
presents the results. 
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Figure 7 Bode Amplitude Plot for an Accelerator-Driven System 

 

 
Figure 8 Bode Phase Plot for an Accelerator-Driven System 

 

The close grouping of both the amplitude and phase shift plots for the accelerator-driven sub-critical 
system shows that there is little dependency on the stability characteristics of the system over this range 
of neutron source values. Fundamentally, this is an expression of the low power density (~0.3 – 0.5 
kw/liter) as compared to AHR that general operate in the 1.5 – 3.0 kw/liter range.  
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Figure 9 Nyquist Plot for Accelerator-Driven System 

 

 
Figure 10 Details of Nyquist Plot for Accelerator-Driven System Near +1 

 
As can be seen from these figures the general stability characteristics of a sub-critical accelerator-driven 
system mimic that of the fissile solution reactor: 

• Resonances of the transfer function decrease with increasing power while phase shift increases; 
• The plot of the characteristic equation (Nyquist) meets stability criteria; 
• These system exhibit high stability across a wide range of source strengths. 
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Conclusions 
A general transfer function applicable to both AHR and subcritical accelerator-driven systems has been 
presented. Analysis of the results of applying the transfer function to both classes of systems employing 
fissile solution fuel allows the general conclusions: 

• These systems are unconditionally stable in the linear approximation; 
• For negative reactivity feedback in temperature and radiolytic gas void, as is the case with 

uranium fissile solution systems, non-linear stability criteria is met; 
• In general it may be concluded that no bounded reactivity or source strength excursion can 

results in an unbounded response. 
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